If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+14k=0
a = 6; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·6·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*6}=\frac{-28}{12} =-2+1/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*6}=\frac{0}{12} =0 $
| -2x-3=6x+5 | | x+21/2x+10=31 | | 1.5h+19=2.75h+14 | | (5x-3(+(2x+1)=180 | | 5(x-9)+6=2x+3x+-8 | | 3u=u+36 | | 25d=1775 | | 2x+140-10=180 | | -6y=17+3y-10 | | 20=2+z/6 | | 5q=7 | | 8(5-4c)+25c+7c=10 | | 2x+3x-8=5x+10 | | 23=2t+1= | | n/3+1=-2 | | -4=2v+8 | | -7k-2k^2=0 | | 140+2x-10=180 | | 6-8x=3.6 | | 840=-28r | | 9x+7=9x | | X+20=2x+32 | | 13-w=155 | | 17=-5(3+w)+6 | | n/3-1=-3 | | A*x+B+C*(x^-1)=100 | | 32-(3x+4)=2(x+5)+x | | d•5.20=2.40 | | 51/6(n-4)51/6n=446 | | 6+17t-3=93-7t | | -5=3-m | | -11x-8x=0 |